Necessary and sufficient conditions on solvability for Hessian inequalities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Necessary and Sufficient Conditions for the Solvability of the L Dirichlet Problem on Lipschitz Domains

We study the homogeneous elliptic systems of order 2l with real constant coefficients on Lipschitz domains in R, n ≥ 4. For any fixed p > 2, we show that a reverse Hölder condition with exponent p is necessary and sufficient for the solvability of the Dirichlet problem with boundary data in L. We also obtain a simple sufficient condition. As a consequence, we establish the solvability of the L ...

متن کامل

Necessary and sufficient conditions for the solvability of the Lp Dirichlet problem on Lipschitz domains

We study the homogeneous elliptic systems of order 2 with real constant coefficients on Lipschitz domains in Rn, n ≥ 4. For any fixed p > 2, we show that a reverse Hölder condition with exponent p is necessary and sufficient for the solvability of the Dirichlet problem with boundary data in Lp. We also obtain a simple sufficient condition. As a consequence, we establish the solvability of the L...

متن کامل

On Strongest Necessary and Weakest Sufficient Conditions

Given a propositional theory T and a proposition q, a suucient condition of q is one that will make q true under T , and a necessary condition of q is one that has to be true for q to be true under T. In this paper , we propose a notion of strongest necessary and weakest suucient conditions. Intuitively, the strongest necessary condition of a proposition is the most general consequence that we ...

متن کامل

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

Necessary and Sufficient Conditions for Copositive Tensors

In this paper, it is proved that a symmetric tensor is (strictly) copositive if and only if each of its principal subtensors has no (non-positive) negative H++-eigenvalue. Necessary and sufficient conditions for (strict) copositivity of a symmetric tensor are also given in terms of Z++-eigenvalues of the principal sub-tensors of that tensor. This presents a method for testing (strict) copositiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2010

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-09-10032-1